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CHAPTER1

Introduction




1.1 Research Objectives and Methodology

This research addresses the need to accurately analyze the performance of a
particular class of frequency-modulation (FM) numerical demodulation techniques that are
amenable to real-time implementation. The class of demodulators to be analyzed are those
which apply the backward difference estimate of the time derivative of the phase to
produce instantaneous frequency estimates. The receive-signal conditions used for
performance analysis purposes are that of a single, discrete-time, constant envelope,
frequency-modulated complex exponential in the presence of additive, spectrally uniform,
Gaussian noise. With the performance of the backward difference numerical FM
demodulator as an established baseline, a further objective is to address the performance
enhancement of this demodulator in specific receive-signal conditions, by employing
frequency feedback techniques. In this case, the receive-signal conditions of interest are
frequency deviations that are large relative to the bandwidth of the message signal, a low
sample rate resulting from decimation, and noise strengths that yield values of input
carrier-to-noise ratio (CNR) of the order of 10 dB or more.

The performance analysis methodology is a combination of theoretical analyses
and experimental verifications via non-real-time computer simulations. More correctly, it
is the noise-contaminated complex signal that is simulated and used as input to the
demodulation processes, for performance measurements and comparisons. The
demodulation processes themselves are direct floating-point implementations, and are

more appropriately described as being experimental (although non-real-time) in nature.



1.2 Background

Since the pioneering work of Armstrong [1], Carson, and Fry [2], a wealth of
research has been conducted in the theory and applications of analog FM communication
systems. In particular, previous research has included various analyses of the effects of
noise on the received signal, such as the work presented by Middleton [3, 4], Stumpers
[5], and Rice [6]. More recently, with the advent of high speed digital circuitry and
programmable signal processors, interest has turned toward discrete-time implementations
of the FM demodulation process.

Various methods have been proposed for performing discrete-time FM
demodulation. These include zero-crossing interval averaging for signals where the
deviation of the instantaneous frequency from the carrier is small, and iterative recovery
techniques using zero-crossings as proposed by Wiley, Schwarzlander and Weiner [7]
where large frequency deviations exist. In contrast to these techniques, the research to be
presented addresses the problem of numerical demodulation of uniformly sampled
discrete-time signals, using the complex analytic signal. An example of this type of system
is the discrete-time FM receiver proposed by Kammeyer [8], in which sampled in-phase
and quadrature signals are derived from the received analog signal and used to produce a
linear estimate of the original message modulation. The processing proposed by
Kammeyer is consistent with the continuous-time definition given by Cramer and
Leadbetter [9] of instantaneous frequency, as the derivative (with respect to time) of the

recovered phase component of the analytic signal.




The earliest work employing the Hilbert transform for generation of the complex
signal is commonly attributed to Gabor [10]. Among the quality references on the
generation and use of the discrete-time analytic signal are the works presented by
Urkowitz [11], and Oppenheim and Schafer [12]. Consistent with Nuttall's work [13],
Urkowitz correctly avoids the previously held notion that the modulated signal must have
a bandwidth which is much smaller than the intermediate frequency (IF) at which
demodulation takes place within the receive chain. This notion is also quite contrary to
the common usage of what are referred to as "zero-IF" receivers employing in-phase and
quadrature signals, where such a bandwidth to IF ratio becomes infinite. Practical
generation of the sampled analytic signal is presented by Schussler and Weith [14], Regalia
and Mitra [15], and Rosenkranz [16] using Hilbert transform techniques. Schussler and
Weith present a design method for a causal recursive Hilbert transformer. The work by
Regalia and Mitra allows for the use of known half-band filter design techniques in
designing Hilbert transform systems. Rosenkranz presents an alternate sampling-based
method to the more commonplace quadrature downconversion process presented in [11].

In addition to the reception and demodulation of man-made FM signals, research is
also being conducted on the concept of instantaneous frequency as applied to the analysis
of "naturally" occurring signals, such as animal vocalizations and human voice. Much of
this work also relies on the generation of the sampled analytic signal for estimation of the
discrete-time instantaneous frequency. Among the more revealing references for the
concept of the instantaneous frequency of a discrete-time signal is the work by Boashash,

Jones and O'Shea [17]. Although the central difference is used rather than the backward



difference for approximating the time derivative, this work is an example where modulo
2r processing is applied to the instantaneous frequency estimate of "monocomponent”
signals, taking into account the circular nature of the Fourier transform of discrete-time
signals. (As defined by the authors, a monocomponent signal is one "where there is only
one frequency or a narrow range of frequencies varying as a function of time".) Their
presented applications include the detection of harmonically related signals, and
time-varying filtering.

Included in work since that performed by Armstrong, Carson and Fry has been a
considerable amount of effort in the design and analysis of receive systems employing
feedback techniques. Part of this previous research is the analysis of devices such as the
phase-lock loop (PLL), commonly referenced in texts on communications theory, and the
less well known FM with feedback (FMFB) demodulator. The FMFB demodulator as
introduced by Chaffee [18] and furthered by Enloe [19] and others, effectively acts as a
time-varying or tracking filter. However, rather than changing filter characteristics over
time, this device translates the incoming signal in frequency to the fixed center of a
bandpass filter. The purpose of the bandpass filter is to reject out of band noise, while
passing the narrow range of frequencies centered about the instantaneous frequency of the
input signal. Inconsistencies in earlier performance comparisons of the PLL and FMFB
demodulators began to be reconciled with Develet's research [20], in which appropriate
conditions lead to equivalent servo-mechanisms. Emphasis more recently has been on the

discrete-time implementation of these devices.




The evolution of the PLL from continuous-time to various discrete-time
implementations is readily apparent in the literature. For example, Rosenkranz [21] has
presented a discrete-time approach to the PLL for numerical FM demodulation. The
numerical implementation of a PLL is often referred to as a digital PLL (DPLL). The
demodulator presented by Rosenkranz is a type of DPLL which is characterized by a
non-linear phase detector. Continuous-time PLL devices with a nearly linear phase
detector characteristic were studied by Robinson [22] and others, and were referred to as
"tanlock loops". As the name implies, the characteristic of the phase detector in these
devices approached the piece-wise linear phase characteristic of the arctangent. Research
has been conducted on the numerical implementation of the tanlock loop, as evidenced by
the work of Lee and Un [23]. Here, the authors present a non-uniform sampling device
referred to as the digital tanlock loop (DTL). This numerical implementation is modeled
using an exact piece-wise linear phase detector characteristic. As a more recent example,
Ono, Aoyama, Hagiwara and Nakagawa [24] have presented a uniform sampling
numerical PLL implementation with a linear phase detector. In this work and that of Lee
and Un, we begin to see the appropriate trend to mathefnatically model the modulo 27
process, and include this process in subsequent phase-domain block diagrams and models.

Recently there has been much interest in time-frequency distribution theory and
applications. Boashash and White [25] have employed methods of instantaneous
frequency estimation to control a time-varying filter. Although the device is properly
described as a tracking filter, the technique is more appropriately referred to as an open

loop system.




1.3 Overview

As claimed within the work presented by Natali [26], there are relatively few
publications pertaining to the automatic frequency control (AFC) loop, a form of tracking
device employing frequency feedback. With Natali's research, we begin to see an interest
in the performance analysis of numerical FM discriminators, as applied to the AFC loop.
Even this work, however, does not include the use or performance analysis of a
discrete-time FM discrimination device that has a linear characteristic over the entire
Nyquist band. Thus it is evident that a need exists to properly characterize the
performance of such discrete-time FM demodulation processes.

In view of the previously stated objectives of this research, we begin in Chapter 2
with the application of the concept of Riemann surfaces to the time-domain phase plane
leading to the definition of a modulo 2 process, referred to as gla]. Here, o is a variable
representative of an input argument value, and g[at] is the output result. This process is
necessary for the proper definition of the instantaneous frequency of a modulated complex
exponential sequence. It is also necessary for proper theoretical analysis of the
discrete-time angle demodulation processes. This analysis leads to the accurate prediction
of changes in the error in Riemann sheet identification at any particular sample instant,
referred to as a "phase cycle-slip". We continue in Chapter 2 with the demonstration of
the equivalence of the traditional quadrature downconverter and the complex bandpass
filter, for generation of the in-phase and quadrature sequences from the original
real-valued input sequence. This in turn leads to the concept of the "generalized

pre-envelope", as presented and used throughout the research.




The concepts developed in Chapter 2 are subsequently used in Chapter 3 in the
development and definition of the numerical FM discrimination process. In Chapter 3, we
modify the Arcsine numerical FM demodulator presented by Kammeyer [8], to extend the
linear phase detector characteristic to the complete Nyquist frequency band arising in
complex-valued systems. We also introduce several other methods of numerical FM
demodulation. These include the Arccosine, the Principal-Value Arctan (previously
developed by the author), and the Standard numerical FM discriminator. The Standard
numerical FM discriminator is derived from the conversion to discrete-time of a
continuous-time FM discrimination process. Subsequent demonstration of the equivalence
of the presented numerical FM demodulators to the Standard discriminator, and to the
better known Direct and Indirect methods, allows us to refer to these devices as numerical
FM discriminators. Chapter 3 concludes with the development of explicit sample rate
requirements for frequency modulated complex exponential sequences. This leads to the
definition of a pair of parameters which characterize the modulated complex exponential.
These parameters are the relative message sampling rate, v, and the discrete-time FM
(DTFM) modulation index, 8. The definition of the process g{a] is then modified for use
with the generalized pre-envelope.

In Chapter 4, an analysis is presented of the performance of the backward
difference class of numerical FM demodulators in the presence of additive white (over the
Nyquist band) Gaussian noise (AWGN). Both theoretical and experimental results

obtained via computer simulations, are presented.



Finally, in chapter 5, we address the issue of performance enhancement of the
numerical FM discriminator under specific modulation conditions, through the use of

specific frequency feedback techniques. Here, the reconstituted numerical FM with

feedback (RNFMFB) demodulator is introduced. Enhanced discriminator performance is

demonstrated via computer simulation techniques.




CHAPTER 2

Complex Numbers and the Generalized Pre-envelope
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2.1 The Geometric Interpretation of Complex Numbers

The purpose of the proceeding sections is to review the mechanism of the vector
representation of complex numbers and complex valued time sequences [27]. A
nonrandom complex number, C, can be represented mathematically in Cartesian (i.e.,

rectangular) coordinates as
C=Cr+jC;, 2-1)

where C, is a real valued number representative of the real constituent of C, and C is a
real valued number representative of the imaginary constituent of C. The variable j has the
usual meaning of the square root of -1. Note that it is the association or pairing of C,, with
C,, combined with rules of complex arithmetic, which facilitate the processing of complex
numbers on a computing device.

Geometrically, C can be interpreted as a point in a two-dimensional plane, whose

location is determined by the ordered pair of real numbers, {C, ,C,}, as depicted in Figure

(2-1).

imaginary axis

{Cr.Cr}

Cl

real axis
CR

Figure (2-1). The geometric interpretation of a nonrandom complex valued constant,
C =Cr+jCy , as a point in two-dimensional space.
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It is also apparent that this point in space is identifiable by a vector referenced to the origin

with a particular length, L, and direction angle, o , as depicted in Figure (2-2)

imaginary axis

{CR ’CI}

real axis
Cr

Figure (2-2). The vector interpretation of a nonrandom complex valued constant,
C=Cgr+jC;, referenced to the origin.

The angle o is by convention measured from the positive real axis. This angle is
considered positive when C, is positive, and negative when C, is negative. Also, o is zero
when C, is zero and C, is positive. It is apparent that the ordered pair of real numbers,

{L ,o }, is an alternate representation of the complex constant, C.

The values of L and o are readily determined from geometric considerations as

L= JcEiCE (22)

and

o =Arctan{z" }. (2-3)
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Thus L is the radial distance of the point {C, , C,} from the origin and is always
non-negative. L is commonly referred to as the envelope, modulus or magnitude of the
complex constant C, and is represented as |C | . The angle o is commonly referred to as
the phase or argument of C , and is represented as £C . This phase angle can be defined

either as

—m<a<+m, ie, o € [-T,+n),

or alternatively as

—-t<o<+m, e, a € (—n,+n] ,

for unambiguous representation. Special note is made of Equation (2-3), in which the first
letter of the abbreviation for the arctangent is capitalized. This is to distinguish this
arctangent of a ratio of two known real quantities, from the arctangent of a single known
real quantity. In the latter case, an angle in the range -n/2 to +7/2 results, and is normally
referred to as the principal value. In the case of the arctangent of the ratio of two
quantities which are representative of the coordinates of a point in space, {C,, C, },the
signs of both C, and C, are necessary to determine whether to add or subtract © from the
principal value resulting from the arctangent of the ratio of the coordinates. This in effect
determines the phase quadrant in which the vector lies. Thus the complex constant, C,

can be represented in vector or polar notational form as the pairing

c=ICl«C.
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As with the ordered real pair {C, , C, }, complex arithmetic rules have been developed for
the ordered real pair {|C |, ZC }. These rules facilitate the processing of complex

constants represented in polar form, on a computing device.

2.1.1 Further Considerations of the Phase Angle o

From further geometric considerations it is evident that the real component of C is
Re{C} =Cgr=IClcos[a] , (2-4)
and likewise the imaginary component is
Im{C} =Cr=|Clsin[a] . (2-5)

Employing Euler's identity leads us to the exponential representation of the complex

constant C, as the product
C=ICle™ . (2-6)

The exponential form piaces in evidence the fact that o need not be constrained to be less
than 7 in magnitude. This is a consequence of the modulo 27 nature of the cosine and
sine functions in Equations (2-4) and (2-5). Thus the exponential form leads to the
concept of expanding the complex plane of Figure (2-2) into a continuum of "sheets"

overlapping in a helical fashion, which can be likened to a spiraling staircase. We can
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consider each angle o as resulting from the rotation of the vector C, starting from the
phase angle zero. As the rotation progresses from slightly less than +r to slightly greater
than +m, the vector representing C is said to progress from sheet 0 to sheet 1. Likewise,
for any progression across the negative real axis, the vector is considered as progressing
to the next sheet. (This helical surface is a particular example of what is referred to as a

Riemann Surface [28].)

To allow for the placement of the complex constant on some particular sheet, 7,

the angle a. is written explicitly in terms of its constituents as

o =0l +2rm , 7 € integers , do € (—7,+7] . 2-7

In so doing, the various complex constants represented by Equation (2-6) become unique
via knowledge of the integer r . This integer is representative of the number of angular
rotations of the vector C through an entire 27 cycle as referenced to the positive real axis,
and corresponds to the sheet number on which the vector lies. For example, with a phase
angle of -1.17 , the vector C lies on sheet -1, and ris-1.

Note that in many situations, the integer » may not be known. In this case,
determination of the phase angle via Equation (2-3) from the ordered pair {C, , C, } , will
yield o, rather than o . Thus in general, the ordered triplet {C, , C,, r } is required for a
"complete" representation of the complex constant C . Likewise, the ordered triplet

{IC],a,,r} will be referred to as a complete representation.
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2.2 Processing Considerations in the Utilization of Complex Numbers

In many situations where complex numbers are represented and processed on a
computing device, the representation is either intentionally or necessarily incomplete in the
sense that the integer 7 is not used or not known. For example, in representing the
discrete-time counterpart of a continuous-time bandpass signal, the initial value of 7 is
either unknown or assigned the value zero. In fact if r, as a result of processing, takes on
another value other than zero, it is often re-assigned the value zero. In such a case, the
process is utilizing o, rather than oo . This prompts us to define the function, or more

correctly, the process g[ ] as

gla] = {ou+ 7 - sgn(0)} modutorn — 0 - sgn(t) , {0+ - 5RO} modtonn £ 0
=47, {(X. +7- Sgn(a)}moduloh =0 s

sgn(b)=+1,5>0
=0,b6=0
=-1,b<0. (2-8)

A plot of g[ow ] versus o is shown in Figure (2-3). The process g[a ] is simply
representative of the information loss in going from the ordered pair {|C |, o } , triplet
{IC], o, 7} ortriplet {C,, C,, r } representation of C, to the ordered pair {|C |, o, }
or {C;, C, }. Likewise, it is representative of the modulo 2n nature of the quantity ™ .

Note for example that

oo = glow] = gla], (2-9)
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demonstrating that all phase angles are mapped to sheet 0 , by the process gfa. 1.

gla]

+7

sheet -1 ' sheet 0 ' sheet 1

Figure (2-3). The process gla ] .

From Equation (2-9) it is also readily apparent that

/% = efg[ao+2m]
= e/glool  (2-10)

Thus for the incompletely specified complex number C represented as {C,, C; } , the

equivalent exponential form of C is |C |esl*]

2.2.1 Implicit Versus Explicit Addition of Phase Angles
We are now able to make a distinction between the implicit and the explicit
addition of the phase angles of complex numbers. The addition of two phase values which

were obtained via independent applications of Equation (2-3), is considered to be an

explicit addition. The result of this addition ranges from -27 to +27 radians, since each of
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the phases being summed ranges from -7 to +7 . More generally, if M such phase angles
from sheet 0 are added together, the result ranges from -M~ to +Mmr radians. Note that
explicit phase angle addition results in a phase angle that is associated with a resulting
complex number which may require a complete representation; i.e., the integer »
associated with the resultant complex number may be non-zero.

An alternate method of implementing the addition of the phase angles of a set of
complex numbers is to do so implicitly, via complex multiplication. For example, consider

the resultant product, C, of the complex numbers 4 and B, where

A = |A|esgleoat2ran]
and
B = | Bl efgleo+2rsm]
Here, the phase angles o, and o, and the integers 7, and( r, are such that
Oloa = glata] and otgs = glots] , with ota = Loq +27,7 and oy = Olop + 27T .

The product is formed as

C=A-B
={dr,Ar}-{Br,Br}
= {AR'BR—AI-BI,AJ'BR+AR'BI}
={Cr,Cr}. (2-11)
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The resulting phase, o, , is found using Equation (2-3). Equivalently we can write

C=4-B
= IAIejg[aﬂ] . IBIng[ab]
= 14| - | Ble/glelaakelosll

= [Cle/e . (2-12)

Note that even if 7, and 7, are known, 7, is not identifiable using the implicit method of
phase additions. Note also that if phase differencing is desired, the difference can be

performed implicitly by first forming the conjugate of B as

B*={Br,-Br},

and subsequently forming the product 4 -B* .

If it is desired to obtain the implicit result using explicit phase additions, the
process g[a ] can be applied to the explicit result. It will become evident as this research
progresses that the distinction between implicit and explicit phase additions is needed to be

able to properly analyze the numerical FM discrimination process.
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2.3 The Discrete-Time Bandpass Signal Representation and Generation of the

Corresponding Complex Envelope

We turn our attention now to the representation and processing of signal
waveforms that are essentially bandlimited in frequency, such that these continuous-time
signals can be uniformly sampled in time with tolerable destructive aliasing. For samples
equally spaced in time (i.e., uniform sampling,) the Nyquist sample rate requirement
implies that a lowpass signal of bandwidth W Hz can be sampled at time intervals of
At =T < 1/(2W) seconds, to prevent (destructive) aliasing of frequency constituents. This
translates to selecting a sample rate, F, = 1/7, , greater than twice the lowpass signal
bandwidth, W. For bandpass signals of approximate bandwidth B’ Hz, and originally
centered at some carrier frequency f, Hz, sampling can be performed as above by first
downconverting to a new center frequency of f, > B'/2 Hz, with W= f, + B/2. In this
manner, we have not violated the requirement that the bandpass bandwidth relative to f,
must be less than 200% [11]. Further details of this process are deferred to Chapter 3.

By sampling such a bandpass, continuous-time signal s(7) at integer multiples of
At =T,, we obtain the discrete-time sequence s(n7,), where the index 7 is an integer

which identifies a particular sample of the newly obtained sequence.

2.3.1 A Method of Complex Envelope Generation: The Numerical Quadrature

Downconversion Process

The numerical or digital quadrature downconversion process [11] is presented as a
model of the processing which is required to generate the in-phase (i) data

corresponding to the real constituent of the complex envelope sequence, and the
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quadrature ( q ) data corresponding to the imaginary constituent of the complex envelope
sequence, from the real sequence, s(n7T,). As will be seen in Section 3.3, a properly
downconverted and sampled angle modulated signal can be considered to be a

discrete-time bandpass process. We represent this input signal , s(nT)) , as
s(nTs) = a(nTs)cos2nfnls +o(nTy)], amls)>0, (2-13)

where a(nT) is the time varying amplitude of s(nT), and §(nT) represents the phase or
angle modulation imposed on the signal. In this research, f; is defined as the true center
frequency after analog downconversion (immediately prior to sampling), which is
considered to be close to the center of the Nyquist bandwidth. Thus for a sampling rate of
F, samples per second, £, is about half way between 0 and F,/2 Hz, i.e., f, = F,/4 Hz.

As seen in Figure (2-4), the input signal, s(n7)), is replicated and mixed with two local
osqillator frequencies which are in phase quadrature relative to each other, and at the
tuning frequency, f;. This tuning frequency is set to exactly (within the numerical
accuracy of the processing device) one-quarter of the sampling frequency, since this is our
best estimate of the true center frequency, f,. The mixing (numerical multiplication)
process generates in the i and g channels, frequency components centered around both
(f.+f)and (f.-£,). The role of the (identical) lowpass filters is to remove the
unwanted components centered around ( f,+ ;). Further insight into the workings of the
numerical quadrature downconverter is arrived at by analyzing the channels

simultaneously using complex signal representation.
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In-phase

ip(T:) | Digital | Channel
——)(%)——-—) ngF > i(nTy)
2cos(2nf; nTs +0)
s(nly) ———>
Quadrature
4p(1Ts) [ Digital | Channel
——)?——> Lo > q@T)
-2 sin(2nf; nTs +6)

Figure (2-4). The numerical quadrature downconverter.

The rules of complex arithmetic justify the interpretation of the overall mixing

process as the multiplication of the real input signal by the complex exponential

2e 70T = 2 cosfouo(nTs)] —j - 2 sin[aso(rTy)] , (2-14)

where

ao(nTs) = g[2nfi nTs +0] . (2-15)

The result is the circular (i.e., periodic) convolution of the periodic spectrum of the input
signal with the periodic spectrum of the complex exponential of Equation (2-14). In

effect, the original signal spectrum, S(¢””"), is circularly rotated down in frequency by
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the amount £, . This is a direct consequence of the discrete-time modulation or windowing
theorem [12].

Figure (2-5) shows a representative set of resulting magnitude spectra, at various
stages in the numerical quadrature downconversion process. The pair of digital or
discrete-time lowpass filters can be interpreted as a single real filter operating on complex
data, with the desired magnitude response as seen in the figure. Thus after multiplication

by the complex exponential, but prior to the filtering, we have the pre-filtered complex

signal
sp(nTs) = ip(nTs) +jgp(nTs) , (2-16)
where
ip(nTs) =2 - s(nTs)cos[2nfi nT +0] (2-17)
and
q,(nTs) =-2-s(nT. )sin[2ntf; nTs +0] . (2-18)

After application of trigonometric identities and lowpass filtering, we obtain the

approximation to the sampled complex envelope, §(nT;) , as

F(nT,) = i(nTs) +jq(nTy) (2-19)

where
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inTs) = a(nT’s)cos[2nfenTs + o(nTs) - 6] (2-20)

and
q(nT) = a(nTs)sin[2nf.nT; + p(nTs) — 0] . (2-21)
AN CEAEADY
a)
I I 1 | 1 I 1 f
-Fs -Fs/2 —fl 0 fI Fs/2 Fs
Desired LPF Response
ISp(ejanTs)I %
b)
; ;F T 4
-Fs -Fs -, 0 f; s
[S(e?¥ )|
c)
¥ ] 1 I | I f
-Fs -Fs/2 -~ fl 0 f, Fs/2 Fs

Figure (2-5). A set of representative signal magnitude spectrum plots: a) Representative
input signal magnitude spectrum; b) The frequency shifted and pre-filtered signal
magnitude spectrum; c) The magnitude spectrum of the resulting complex envelope
estimate.
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Here, f, is the error in the estimate of the true center frequency, ie, f,=(f.- f) This
error is a consequence of the noncoherent nature of the quadrature downconversion
process, and can be either negative or positive. In the absence of a tuning error, the
remaining error accounted for by the above approximations, is due to the non-ideal nature
of the lowpass filters. The quadrature downconverter therefore generates the sequence of

ordered pairs, {i(nT,),q(nT,)} as a time-ordered series of Cartesian coordinates, available

for subsequent processes.

2.3.2 A Method of Complex Envelope Generation: The Complex Bandpass Filter
The processing of the sequence s(n7}) by the numerical quadrature downconverter
as presented in Figure (2-4) and described in Section 2.3.1, will be shown to be equivalent

to linearly convolving s(n7,) with a complex bandpass filter with impulse response

hegnTs) = hi(nTs) +jho(nT5) (2-22)

and subsequently (circularly) rotating the result in frequency by the amount -f, Hz. To
determine this impulse response, we first consider the complex output, i(nT )tjq(nT)) .

From Figure (2-4), it is readily apparent that

inTs) +jq(nTs) = 2e7° - {s(nTs) - e "5} % hyp(nTy) . (2-23)

(Note that for the present discussion, to simplify analysis we will use the standard

approach to the representation of the complex exponential, by not explicitly identifying the
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process g ] in our equations. ) Here, A, (n7) is the real-valued impulse response of the

lowpass filters of the quadrature downconverter. Indicating spectral periodic convolution

as ®, the right-hand side of Equation (2-23) has the discrete-time Fourier transform

26 (ST} - Hyp(eP975) = 2P {S(EF77) - Hyp(eP )} 5 8(f+fi+mFy),

:2& <fi < % , m € integers. (2-24)

Taking the inverse Fourier transform of the right-hand side of Equation (2-24) and

applying Equation (2-23) we find that
i(nTs) +jq(nTs) = 27 {s(nT) * [hip(nTy) - €971} - e92inTs (2-25)

Thus Equations (2-23) and (2-25) demonstrate that the quadrature downconversion
process of Figure (2-4) is equivalent to convolving s(n7.) with a complex impulse

response, A, (nT) , and subsequently multiplying the result by the complex sequence,
2e—19 e-j21:ﬁnT, )
The complex impulse response is identified as

heq(nTs) = hlp(nTs) . eﬂﬂ;ﬂnTs
= hy(nT5) - cos[2nfinT,] + jhyp,(nTy) - sin[2nfinT] . (2:26)

From Equations (2-22) and (2-26) we have

27



hi(nT) = hp(nTy)cos[2nfinTs] , (2-27)

and

hy(nT) = hip(nTs)sin[2nfinT;] . (2-28)

This establishes the impulse response of the complex bandpass filter. We now turn our
attention toward identifying the complex bandpass filter coefficients.

Consider the lowpass filter impulse response, 4,(nT}) , and its z-transform, H,(2).

For H,(z) of the form
M
2 bzt
Hy(2)=5— (2-29)
1-2,a- z*
k=1

the impulse response, 4, (n7,) , is determined by the M+1+N real coefficients b, ,

k=0,1,2,..,.M and g, , k=1,2,3,...,.N. The z-transform of A(nT, ') is by definition
H@) =3 hnly) -z (2-30)

Therefore, the complex sequence,
hyp(nTy)e il |

has the z-transform
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hyp(nT)e?™inTs & Hy(z- e9¥i0s ) = H,.(2). (2-31)
Thus for filters of the form presented in Equation (2-29) we have

S, by ek
k=0

Hey(2) =

N
1-2, ay {zePMWilsyk
k=1

AZJ: {by e+12"flkTS}.z“k
== . (2-32)

N
1_2 {ak e+f2"flkTs}.z'k
k=1

Equation (2-32) implies that any filter with the response as indicated in Equation (2-29)
can be circularly rotated in frequency by the amount £, , by multiplying the finite length real

coeflicient sequences a, and b, by the complex exponential sequence,

e +27f; kT ‘

Thus we can transform the lowpass filter of the quadrature downconverter into a complex
bandpass filter, and subsequently linearly convolve the input sequence with this complex
filter. The result of this convolution can then be circularly rotated down in frequency as
implied in Equation (2-25), to yield the complex envelope identified in Section 2.3.1 .

This process is depicted in Figure (2-6).
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Desired Complex Bandpass Filter Response

2] S(e_]zﬂ:fTs)l /\

a)
T 1 1 | ' 1 f
-Fs -Fs/2 —fI 0 fl Fs/2 Fs
[S(e? 1)
b)
T T T 1 T T f
-Fs -Fs/2 -fl 0 f. Fs/2 Fs
[S(e2v )]
c)
T I I | | i ! f
-Fs -Fs/2 -fl 0 fI Fs/2 Fs

Figure (2-6). A set of signal magnitude spectrum plots which are representative of the
complex bandpass filter method of complex envelope generation: a) Representative input
signal magnitude spectrum; b) The result of filtering this input signal with the complex
bandpass filter; c) The magnitude spectrum of the resulting complex envelope estimate.

2.4 The Generalized Pre-envelope

In light of the equivalence of the numerical quadrature downconversion method
described in Section 2.3.1 and the complex bandpass filter / downconversion method
described in Section 2.3.2, the generalized pre-envelope is introduced. Normally the term

"analytic signal" and the notation s,(n7,) is reserved for the pre-envelope,
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: 3; (nTs) . e+]21tfC nTs ,

to identify the complex signal prior to downconversion [29]. This is the signal whose
spectrum is depicted in Figure (2-6 b). In this research, however, it will become evident
that the discrete-time FM demodulation methods to be described need not rely on whether
downconversion is explicitly implemented as in the previously described methods.

Therefore, it is convenient to define the generalized pre-envelope as

~ “Fs Fs
s:(nTs, fo) =3 (nTy)e?¥orls =5 < f, < T2 (2-33)

The pre-envelope and the complex envelope are simply the special cases where f,= f, ,
and f,= 0 respectively. Thus the generalized pre-envelope sequence, is simply the
complex envelope sequence circularly rotated in frequency to an arbitrary frequency, £, .
For the case where an unknown tuning error, f,, exists as previously described, for

notational simplicity we will adopt the convention

S+(nT5) = S+(nTs, _ﬂ) .
Note that the real phase sequence extracted from the complex generalized pre-envelope is
oo (1T, fo) = glanTs, o), (2-34)

where
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o(nTs, fo) =2nfonTs +o(nls) ~0 . (2-35)

The demodulation methods to be described in Chapter 3 require as input the
complex envelope, as generated by the preceding techniques or their equivalents. More
generally it will be seen that the generalized pre-envelope can also be processed to

estimate the original message.
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CHAPTER 3

Analysis of a Class of Numerical FM Discrimination Methods

Amenable to Real-Time Implementation
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3.1 The Ideal Discrete-Time FM (DTFM) Signal

In Chapter 2, methods were introduced for generating the discrete-time
generalized pre-envelope, s,(n7), from the discrete-time bandpass signal, s(n7}). It is
readily apparent that these techniques are approximate or non-ideal in light of the fact that
the required ideal lowpass (or complex bandpass) filter cannot be realized [12]. In fact
there are numerous distortions of the original message and the modulated signal, which
have taken place in all stages of the transmit/receive process. It is therefore not the intent
of this research to address the various issues regarding the generation of the pre-envelope
with regard to its accuracy in representing the intended modulated signal. However, it is
the intent of this research to establish a baseline numerical FM demodulation method, to
which other methods can be compared. To accomplish this objective, the analyses and
simulations throughout this research will utilize what is considered to be the ideal

generalized pre-envelope,

s+(nTs) = i(nTs) +jq(nTs) , (3-1)
where
i(nTy) = a(nTs)cos[2nfonT, + (nTy) - 6] (3-2)
and
q(nT;) = a(nT)sin[2nfonT, +§(nTs) - 6] . (3-3)
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The class of numerical FM discrimination methods to be described estimate the original
message by processing the time sequence of ordered pairs, {i(nT),q(nT,)} . Thus
subsequent numerical discrimination methods can be fairly compared since all will be
processing this same ideal generalized pre-envelope.

The envelope, |a(nT)| , for the present will not be restricted to being constant, but
we will impose the constraint that a(nT.) be greater than 0, as indicated in Equation
(2-13). As before, £, is indicative of a frequency tuning error. The sampled phase angle

term, ¢p(rn7), is modeled as being the result of the frequency modulation process

t=nT;

O Ts) = 6O enr, = 27Af | m(H)dt , (3-4)

0

where m(f) is the original bandlimited message, that has been amplitude limited such that

~1<m(f) <+1,

and is also zero mean in time. The complex signal defined by Equations (3-1) through
(3-4) is representative of what will be referred to as the ideal discrete-time FM (DTFM)
signal. The constant phase term, 0 , is comprised of two sources of constant phase offset.
The first is the arbitrary but unknown phase offset between the carrier and the local
oscillator frequencies of the numerical downconversion process. The second is the
constant phase resulting from the integration of the modulating signal, including time ¢
less than 0. Both sources of constant phase offset are taken into account via the arbitrary

but constant phase, 0 .
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The discrete-time true instantaneous frequency, y(nT), is defined as
Y(Ts) = ¢/ (0Ts) = ¢/ W)\ snr, = 200 - m(D)) e, (3-3)

in units of radians per second. This is obtained by direct differentiation of Equation (3-4).
(The prime in Equation (3-5) indicates differentiation with respect to time.) Thus, in all
approaches, the goal is to estimate the sampled instantaneous frequency [30], which is

found as the time rate of change of phase of the modulated complex signal, s,(n7)).

3.2 Numerical FM Discrimination (Demodulation) Techniques

As already indicated, the numerical FM demodulation techniques to be described in
this research are considered to be of the same class, in that each results in the backward
difference approximation to the time derivative of the phase, as a method of recovering the

modulating signal. The differentiation of a continuous function of time, x(#), can be

defined as

/ ax(t) _ 4. x(O)—x(-A1)
x'()==*=lm [——] . 3-6
0= o _}0[ el (3-6)

The backward difference approximation to the discrete-time signal, x'(n7)), resulting from

this differentiation is [12]
/() = TR = BT - x((n - 1179} (3-7)
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and is readily seen to be the (weighted) difference between the present and previous
samples of the sequence, x(nT,). The weighting allows for the incorporation of the
knowledge of the value of 7, into the approximation. Note that this approximation
approaches our definition of the actual time derivative in Equation (3-6) as the sampling
interval, T, decreases. It can be shown (see Appendix A) that this approximation to the

time derivative has the magnitude frequency response

|Hp(e"™)| =1 - J2—2cos(wTy) , (3-8)

which for small values of || relative to the sampling rate, closely resembles the desired
magnitude response of the time derivative.

These numerical demodulation techniques are presented in a progression of
development beginning with what is considered to be the two most fundamental methods
of this class, the Direct and the Indirect or Implicit numerical FM discriminators.
Following these methods, the Arcsine method is arrived at by employing a mathematical
analysis of the nearly equivalent continuous-time analogy, and subsequently compensating
for distortions introduced by the sampling process. The Arccosine method is presented in
a similar fashion. As will be seen, the Principal-Value Arctan approach is developed via
an alternate compensation method applied to the first stages of the Arcsine approach. The
last technique to be covered in this chapter will be referred to as the Standard numerical
discriminator, since it is developed in an analogous fashion to the standard or conventional

continuous-time FM discriminator.
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3.2.1 The Direct and Indirect Methods of Numerical FM Discrimination

Before proceeding further with the descriptions of the Direct and Indirect methods
of numerical FM discrimination, we must modify our definition of the backward difference
approximation. Since we are applying this approximation to a sequence which is
representative of sequential phase angles extracted from the generalized pre-envelope, we

must take into account the modulo 2% nature of these angles. Thus we define the

backward difference approximation to the desired discrete-time signal, a'(n7, f.), as

&/(nTs,fo) = g[Olo(nTs,fo)—;:o([n—I]Ts,fo)] =F,- g[ao(nTs,fo) _ (X()([n _ 1]Ts,fo)] , (3_9)

where o, (nT, f) is as presented in Equation (2-34). Equation (3-9) is the backward
difference approximation to the rate of change of phase of the generalized pre-envelope,

s,(nT,, f,) . With this definition, we can now develop the Direct and Indirect numerical

discrimination methods.

3.2.1.1 Direct Numerical FM Discrimination
Equations (3-1) through (3-3) represent s,(n7) evaluated at /= f, in Cartesian
form, and can be converted to exponential form using Equations (2-2) and (2-3), resulting

in

s+(nly) = JP(T) + @ (T,) - exp{ j-Arctan[22] } . (3-10)
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From simple trigonometric considerations, it is readily seen that

JP@T) +q*(nT,) = la(nTy)| (3-11)

represents the envelope of the original signal, s(n7s), as previously described in Chapter 2.

The instantaneous phase message estimate, b , at time sample n is identified as

bi(nTs) =Arctan] 222] = gl2nfnT;s + 4(nTs) — 6] = ao(nTs) (3-12)

i(nTs)

which implies that

-“TC<(lf)iS+7C .

In other words, the instantaneous phase message estimate will lie on sheet 0 of our
Riemman surface described in Chapter 2. In a straightforward fashion, Equation (3-12)
shows that it is possible to obtain these estimates at any particular sample in time, by using
the corresponding in-phase and quadrature samples. The Direct method of numerical
discrimination is simply the implementation of Equation (3-9), using consecutive
instantaneous phase message estimates. To distinguish between the explicitly required
modulo 2x process g[ ] in Equation (3-9), and the implicitly applied process g[ ] indicated

in Equation (3-12), the Direct method of discrimination is summarized as

JaTs) = $4nTs) = F; - geli(nTs) — §i([n - 11T5)] . (3-13)
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Here, the subscript E on the process g[ ] is used to indicate that this process is being
explicitly applied to the backward difference of instantaneous phase message estimates.
These phase message estimates have been obtained via consecutive Arctan calculations, as
in Equation (3-12).

Either the modulo 2r process, g;[ ], must be applied explicitly to the backward
difference of consecutive instantaneous phase message samples, or a "phase-difference

quadrant determination" algorithm is required as follows:

dnTs) = ¢:(nT;) - ¢i([n - 1]7%)
if{ d(nT;)>+mn }
d(nTs)=dnT;)-2n
if{ d(nTs) <= }
d(nT,) =d(nT;)+2n
J(nTs) = F - d(nTy) (3-14)

Note that the above quadrant determination algorithm achieves the same result as

Equation (2-8) only for the difference range

21 < {$i(nTy) - $i(nT5)} < +2m,

which is sufficient based on the range of phase message estimates returned by Equation
(2-3). In the mathematically equivalent Indirect approach, it will become evident that this

phase difference quadrant determination is not explicitly required.
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3.2.1.2 Indirect Numerical FM Discrimination

The Indirect technique, commonly implemented in practice, utilizes the fact that
multiplication of two complex numbers in exponential form is accomplished by real
multiplication of the magnitudes, and addition of the corresponding phases. Since the goal
is to determine the difference between consecutive phase samples as an instantaneous
frequency estimate, it is possible to achieve this difference by multiplying the complex
pre-envelope phasor (i.e., phase-vector) at time sample #, by the conjugate of the phasor

at time sample (7 - 1). Thus we find that

s+(nT) - s3([n = 11T5) = a(nTs) - a([n — 11Ty)exp{j - [2nf Ts + &(nTs) — d([n — 11713,
(3-15)

and our Indirect instantaneous frequency estimate is found as the "phase" of the resultant

vector in Equation (3-15),

yinTs) = Fy - gl2nfeTo + $(T5) - d(In - 11T5)] (3-16)

In units of radians/sec, the Indirect method of frequency modulation estimation is
proportional to the backward difference approximation to the rate of change of phase, plus
the bias term 2nf,. Rather than converting to exponential form, as indicated in Section
2.2.1 the multiplication can be performed in Cartesian form using implicit phase addition,

since
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s:(nTs) - si([n— 11T) = [i(nTs) +jqTs)] - [i(n - 11T5) —jg([n — 1T =4 +jB

(3-17)
where

A=i(nTy)- i([n—-11Ts) +q(Ty) - q((n—11T) (3-18)
is the resulting real term, and

B =q@Ty)-i([n-11Ts) - i(nT;) - q([n—1]T5) (3-19)

is the resulting imaginary term. Thus we obtain our frequency modulation estimate as

PrnTy) = Fy-Arctan[3] . (3-20)

Equations (3-18) through (3-20) summarize the Indirect numerical FM discrimination

technique, given the in-phase and quadrature samples sequences, i(n7}) and q(nT) .

3.2.2 Arcsine Numerical FM Discrimination
The Arcsine method of numerical FM demodulation [8] is arrived at by first
considering the continuous time analogy to Equation (3-12) which expresses the

instantaneous phase message estimate as
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$:(2) = arctan[£2] = g[2nf.t + (1) 6] . (3-21)
The estimate of the rate of change of modulated phase, (f)f (?), is found by utilizing

d 1 du ]
-c—i;[arctan{u(t)}] “TrlQ dt (3-22)

for the angle range
5 <arctan{u(f)} <+ .

From Equations (3-21) and (3-22) it is apparent that

1 ["(’)'%—q(t)-% _i(t)-%—q(t).%

1420 20 - 2O+¢O
X0

HOE (3-23)

for the instantaneous phase angle range

-n qa®) +n
7 < arctan{ﬁ} <F .

In the methods of numerical FM discrimination being described, we have available to us
sampled versions of the in-phase and quadrature signals, but do not have sampled versions
of their corresponding time derivatives. The Arcsine method applies Equation (3-7), the

backward difference approximation of this time derivative, to i(n7,) and g(nT)) to yield
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inTs)- {qnT;) — q(n— 11T} — qnTs) - {i(nTs) — i([n—11T5)}
i*(nT) +q*(nTy)

dL(nTs) =

_ gy - in—1]7%) — inTs) - g(In — 117

(1) +q*(nTy) ’ (3-29)
which can be scaled by F, for our frequency modulation estimate.
By employing Equations (3-2) and (3-3) in Equation (3-24) we find that
(f)ﬁ(nTs) _ a(nT)a([n— 1]Ts)i§i(r;%c)osD —cosCsin D} ’ (3-25)
where
C =2nf.nT; +¢mls)-0 (3-26)
and
D =2nfun—11T; +o([n—11T5) -0 . (3-27)

Application of a trigonometric identity to Equation (3-25) along with Equations (3-26)

and (3-27) yields

a(nT)a([n—11T,)sin(C - D)
a*(nTs)

L) =
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_ a(nT)a([n - 11T5)sin[2rf. Ts + o(nT) — ¢([n— 1]175)]
a*(nTy) . (3-28)

Under the condition that a(n7;) = a([n - 1]7;), we arrive at

J)ﬁ(nT s) = sin[2nf T + (nT) — d(fn— 1175)] , (3-29)

which implies the need for an arcsine correction, to properly recover an estimate of the

modulating waveform. Thus from Equations (3-24) and (3-29) we find that

Vas(nTs) = F - arcsin[¢/(nTs)]

q(nTs)i([n-1JTs)-inTs)-g([n~11T. s)]

= Fs . arCSlIl[ i2(nTs)+q2(nTs)

(3-30)

can be used to estimate the time rate of change of phase for the phase difference range

F <2nf T+ (T - o(n-11T) 1 <5 .

In comparing the Arcsine method as summarized by Equation (3-30), to the
previously described Direct and Indirect numerical FM discrimination methods, two very
basic observations can be made. The first observation is with regard to the range of phase
differences over which the message can be recovered. It would appear that we are limited
to differences in the range -n/2 to +n/2 exclusively, to be able to utilize Equation (3-30).
In actuality, we can use the sign of the numerator of the argument in Equation (3-30) and

the sign of Equation (3-19) to decide whether to add -x, 0, or +1 to the negated principal
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value returned by the arcsine (prior to scaling by the sample rate, F, ). This new
phase-difference quadrant determination algorithm required by the Arcsine method can be

summarized by

d(nT) = arcsin| L |
if(A<0)
if{(B<0)
d(nT,)=—n—dnT;)
else

d(nT,) = +n —dnTy)
Yas(nT) = F - d(nTy) ,
(3-31)

where A and B are defined as in Equations (3-18) and (3-19). The second observation is
that the Arcsine method is arrived at via the constraint that consecutive envelope samples
are essentially equal (i.e., the signal has a constant modulus). Note that in the event that
the constant modulus condition is not initially present, we can correct the envelope by
normalizing the in-phase and quadrature signal components, thus imposing this condition.
This would be done at the expense of the processing requirements of the extra square-root
required for normalization as implied by Equation (3-11), and the extra divisions which

would be required.
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3.2.3 Arccosine Numerical FM Discrimination

Given the existence of the Arcsine numerical discrimination method and the
Indirect method which requires an arctangent calculation, it is naturally expected that a
discrimination method exists which requires an arccosine correction. Consider the ratio

Y Y S
(I)C(nTs) - i2(nT5)+q2(nTs)

__ i(nTs)i([n-1]Ts)+q(nTs)q(fn-11T5)
- i2(Ts)+q?nTs) ' (3-32)

From Equations (3-2) and (3-3), the denominator of Equation (3-32) is

i(nTy) +q*(nTy) = a*(nTy) .

Similarly, the numerator simplifies to

i(nTy) - i([n—1175) +q(nT) - q([n — 1175) = a(nTs)a([n — 117Ts){cos C cos D + sinCsin D}

=a(nTs)a([n—-1}T;)cos(C - D)

=anT)a([n - 11T;) - cos[2nf. T + d(nls) —d(ln—1175)] .

Here, C and D are as defined in Equations (3-26) and (3-27). With the above

substitutions, the instantaneous frequency estimate is equivalent to

&)/ (n Ts) _ . s)a([n-11Ts)-cos2nf Ts+p(nTs)—([n-11T5)]
c .

2T (3-33)
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For the constant modulus case, we define

Vae(nTs) = F - arccos[(f)é(nT )]

— . —————-A -
=F, arccos[l_2 P (nTS)} : (3-34)

The arccosine function will unambiguously yield a value between 0 and = radians. The

phase-difference quadrant determination algorithm that is required is therefore simply

d(nT) = arccos [_ﬁ_]

(T eyqH(nT's)
if{ B <0.}
d(nT,) = —-d(nTs)
Vac(nT) = F; -d(nTy) , (3-35)

where A and B are defined as in Equations (3-18) and (3-19). Thus, the Arccosine

method of numerical discrimination is as summarized by Equation (3-34) and Algorithm

(3-35).

3.2.4 Principal-Value Arctan Numerical FM Discrimination
The Principal-Value Arctan numerical demodulation method can be developed by
partially utilizing the development of the Arcsine method, previously described. By

making the observation that the backward difference approximation to the time derivative

as defined by Equation (3-7) is most valid at time ¢ = [n - %] Ts , or half way between
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consecutive time samples (see Appendix A) it becomes apparent that Equation (3-24) can

be modified as

q(nTs) - i([n— 1175) —i(nTy) - g([n - 1]T) ' (3-36)

inTHiln-1T) 12 | [ qnTsyrq(n-1375) 72
— 2 1t

$i(nTs) =

Essentially, an attempt has been made to time-align the sampled in-phase and quadrature

signals with their corresponding time derivative estimates, by substituting
2T, +i([n-11T,)}
for i(nT)), and
(a7 +q((n - 11T}
for q(nT) respectively. As can be seen, the numerator in Equation (3-24) remains
unchanged, and the denominator is an estimate of the square of the envelope at time

t=[n-31T; .

By applying Equations (3-2) and (3-3) to Equation (3-36), we find that

4sin[2nf. T + ¢(n1s) — ¢([n - 1175)]

HOT) = et (3-37)
Tty T 2cos[2nf.Ts + o(nTs) — d([n—1]1T5)]
Again, under the condition that a(n7) = a([n— 1]7}), it is found that
(T);(nTs) =2 tan[ 2ﬂﬁTs+¢(nT;)—¢([n—1]Ts)] , (3-38)
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after application of a trigonometric identity. The modulating signal can be recovered as

You(nTs) = 2F, - arctan[%ci)f(nT AR (3-39)

where d::f(nT 5) is as defined in Equation (3-32).
Note that the arctangent required in Equation (3-39) is different from that required

in Equation (3-20) since the range of the obtained sampled phase differences has been

reduced by a factor of 1/2, i.e.,

as implied by Equation (3-38). Thus, the Principal-Value Arctan numerical FM
demodulation method as summarized by Equations (3-36) and (3-39) requires neither
phase quadrant determination as in the Direct and Indirect methods, nor phase-difference
quadrant determination as in the Direct, Arcsine and Arccosine methods. Like the Arcsine
and Arccosine methods, this numerical demodulation technique is best applied to constant

modulus input signals.

3.2.5 Standard Numerical FM Discrimination
The conventional or standard analog FM discriminator [30] consists of a
"slope-circuit" followed by an envelope detector, as shown in Figure (3-1 a). The

frequency response of the slope-circuit is such that a constant-envelope frequency
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modulated signal at the input results in an output signal with an envelope that is
proportional to the original message. The slope circuit is designed to operate at a
particular intermediate frequency, £, , as seen in the representative response in Figure

(3-1b). This response is approximately linear over the frequency interval

(fo-AD <1< (fo+4f) .

Typically, the constant envelope condition is imposed on the received FM signal via
amplitude limiting circuitry, to remove any noise-/distortion-induced envelope variations.
Thus the analog FM discriminator converts the instantaneous frequency variations into

proportional amplitude variations, for subsequent envelope demodulation.

constant-envelope,

frequency modulated modulation
a) signal o envelope estimate
slope-circuit |——-> L 5
) detector
(centered at Jc
with deviation Af )
2A

b) J

Figure (3-1). a) The conventional analog discriminator. b) Representative magnitude
frequency response of the slope-circuit.

+fc,
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The Standard numerical FM discrimination method is the discrete-time
implementation of the conventional analog device. In the discrete-time case, we will be
processing the ideal generalized pre-envelope, s,(n7)) , centered at the frequency £= 1.,
i.e., the slightly mis-tuned complex envelope. Of the various stages of processing
required, it is the discrete-time counterpart to the slope-circuit which requires some
detailed development.

We borrow upon previous developments in both Chapter 2 and Appendix A, to
arrive at a numerical slope-circuit implementation. From Figure (A.3-2), it is apparent
that the response of the backward difference identified as H,(¢' ) approximates that of an
ideal slope-circuit, H,(¢'®) , over the frequency interval 0 to F,/2 Hz. It is also apparent
that if the generalized pre-envelope were centered near F, /4 Hz, it could be filtered using
the (real) backward difference impulse response, to generate a signal with an envelope
modulation which is proportional to the instantaneous frequency. Note that the allowable
range on the instantaneous frequency is from O to F, /2 .

Rather than rotating the generalized pre-envelope from £, Hz to (f, + F, /4) Hz, the
impulse response of the backward difference can be (circularly) rotated in frequency by the
amount -F, /4 Hz, using the methods described in Section 2.3.2. The result is a (complex)
impulse response which can be used to directly filter the complex envelope, s,(n7,). The

impulse response of the backward difference filter is

Ts'hE(nTs):+1’ nZO,
=-1, n=-1,
=0, else. (3-40)
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Frequency rotation of these coefficients is accomplished by multiplying the sequence of

Equation (3-40) by the complex exponential,

n_ Fs .
e 75T ] = Gos[2 - % -nTs]—jsin[2x - % -nT5]

= cos[5 - n] —jsin[ - n]. (3-41)
The result is the discrete-time slope-circuit complex impulse response,

Ts-hgnly)=+1, n=0,
= +j: h= _1:
=0, else. (3-42)

This discrete-time slope-circuit is implemented in a straightforward fashion as shown in

Figure (3-2).

s, (0T, s, () + js, (In-1]T5)

T )
Delay J
> indicates complex data

Figure (3-2). The discrete-time slope-circuit derived from the backward difference filter.
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The output of this slope-circuit is

s:(Ts) +j - s:([n=11T5) = [i(nTs) — q([n = 11T5)] +j - [q(rTs) +i([n - 1]T)] . (3-43)

If we consider forming the square of the envelope of the signal of Equation (3-43), the

result is

lso(nTs) +j - so([n— 11T)12 = [I2(nTs) + 2T )] + [2([n - 11T5) + ¢*([n - 1]T5)]

~2 - [i(nTs) - q(In— 1T5) - q(nT) - i[n - 1]T5)] . (3-44)

As already indicated, in the conventional analog discriminator, a constant envelope
condition is imposed via amplitude limiting circuitry. In a similar fashion, a normalized
envelope condition can be imposed on the complex envelope, prior to the slope-circuit.
Under this condition, the first two terms in brackets in Equation (3-44) are each equal to

unity. In this case Equation (3-44) simplifies to
lss(aT) +j - s:((n = NI opmatizea = 2 - [1 + 9Ty - i(n = 11T5) - i(nTs) - q([n — 11T5)] -
(3-45)

By simply subtracting the constant term and scaling by a factor of 1/2, the Standard

numerical FM discrimination estimate becomes

$/(nTs) = qnTy) - i([n - 11T5) — inTy) - q(In — 11T%) . (3-46)
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Figure (3-3) summarizes the Standard numerical FM discrimination processing steps.

In comparing Equations (3-46) with the intermediate step in the Arcsine
discrimination method of Equation (3-24), it is noted that under the normalized envelope
condition, these equations are identical. It is then immediately evident that once again, an
arcsine correction is required as indicated in Equation (3-30) to achieve a linear estimate
of the original message. Likewise, to increase the range of allowable instantaneous
frequency values to the entire (complex) Nyquist band, the phase-difference quadrant

determination algorithm in (3-31) can be employed.

5, (nT)
j discrete-time \> | |2
slope-circuit 7
"envelope detector”

> complex data —— > realdata

Figure (3-3). The Standard numerical FM discrimination method.
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Thus, the Standard numerical FM discrimination method is found to be
mathematically equivalent to an intermediate step in the Arcsine method. With the
appropriate corrections previously described, the output of the Standard discrimination
process will be equivalent to the output of the Arcsine method. This is interesting to note,
given that the Arcsine and the Standard methods were developed using very distinct
approaches. In fact, it will be demonstrated in the following section that the Direct,
Indirect, Arcsing, Arccosine, Principal-Value Arctan and the (corrected) Standard

methods of numerical FM demodulation are all mathematically equivalent.

3.2.6 Discrimination Method Comparison

In Section 3.2.5 it has been established that the distortion-corrected Standard
numerical discriminator and the Arcsine numerical discriminator are mathematically
equivalent. We will subsequently establish the additional result that the Arcsine method
(and therefore the distortion-corrected Standard method) is also equivalent to the Direct,
Indirect, Arccosine and Principal-Value Arctan discrimination techniques. Thus the
numerical demodulation techniques presented in Section 3.2 are considered to be of the
class of FM demodulators which employ the backward difference approximation to the
time rate of change of phase, as the message estimate. Further, since these numerical
demodulators include the distortion-corrected Standard discriminator, justification of the

term "discriminator" for each member of this class is established. Each member is
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therefore considered to be of the class of backward difference numerical FM
discriminators.

We first consider the equivalence of the Direct and Indirect processing techniques.
Equivalence can be established by demonstrating that the instantaneous frequencies
specified by Equations (3-13) and (3-16) are the same. From Equation (3-12), this implies

that we must demonstrate the equivalence of the Direct proeess,

Ya(nTs) = F - gelgl2nfonTs + d(nTs) - 8] - gl2nfeln — 1]T; + ¢([n - 11T5) - ©]] , (3-47)

and the Indirect process,

j’I(nTS) =F,-gl2nf.T; +o6@mTs) — d([n— 11T5)] . (3-48)

Applying modulo arithmetic rules it can be shown that

gloy — o] = glglon] - glaz]] (3-49)

which immediately demonstrates the equivalence of Equations (3-47) and (3-48), with o,

identified as

oy =2nf.nTs +o(nls) -0,

and o, identified as

oz = 2nf[n—1]1Ts +d([n—1]T5) -6 .
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Thus we find that

Ya(nTs) = Fy - gl2nfeTs + (1) — ¢(nTs)] - (3-50)

Consider now the Arcsine method as summarized by Equation (3-30) and the
phase-difference quadrant determination of Algorithm (3-31). From Equations (3-29) and

(3-30) along with Algorithm (3-31) we have

j’aS(nTS) =F; - gl2nfeTs + d(nTs) — o(n— 1]T)] . (3-51)

The process g[ ] indicated in Equation (3-51) is a result of the phase-difference algorithm.
This algorithm is simply a variant of the phase quadrant determination process required by
the Arctan introduced in Equation (2-3) of Section 2.1. In comparing Equations (3-51)
and (3-48), it is apparent that the Arcsine method of discrimination is mathematically
equivalent to the Indirect (and therefore also to the Direct) method of instantaneous
frequency estimation. Likewise for the Arccosine method, Equations (3-33), (3-34) and

Algorithm (3-35) demonstrate that

JA’aC(nTS) =F; - gl2nfeTs + o(nTs) — d([n—-1175)] . (3-52)

Finally, from the properties of the arctangent required in Equation (3-35) and the results

of Equation (3-34), the Principal-Value Arctan method yields
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}A’pV(nTS) =F; - gl2nf.Ts+d(nTs) — d([n - 1175)] . (3-53)

Thus the Arccosine and Principal-Value Arctan methods are also equivalent to each of the
aforementioned techniques.

It has been demonstrated that the distortion-corrected Standard method, the Direct
and Indirect methods, the Arcsine and Arccosine methods and the Principal-Value Arctan
methods are all mathematically equivalent numerical FM demodulation techniques. Note
however, that differences do exist in the processing requirements of each method.
Therefore, one of the methods will be selected based on implementation considerations, as

an "established baseline" for subsequent performance analysis comparisons.

3.2.6.1 Selection of a Baseline Numerical Discrimination Technique

Each of the previously described numerical FM demodulation techniques require,
as a minimum, a single division and a trigonometric inversion. However, in view of the
additional processing required by the Standard, Arcsine, Arccosine and Principal-Value
Arctan discrimination methods to impose the constant modulus condition, these methods
will not be considered further. It is acknowledged that depending on specific application
requirements, any one of these methods may be considered "better" than the others. For
example, if an application happens to require an envelope estimate in addition to the
instantaneous frequency, the envelope calculation is no longer considered to be an extra
processing burden. In this case, the Standard, Arcsine, Arccosine and Principal-Value

Arctan methods become more attractive from an implementation viewpoint.
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Since, for the purposes of this research, it is the instantaneous frequency which is
of primary interest, the Direct and Indirect methods remain as baseline candidates due to
their insensitivity to amplitude variations. Further still, due to its conceptual simplicity,
the Direct method is arbitrarily selected as the chosen baseline numerical FM
discriminator. It is pointed out, however, that since each of these methods are
mathematically equivalent, subsequent performance analyses and simulations of the Direct

method apply equally well to the remaining discrimination techniques.
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3.3 Sampling Rate Considerations

The sampling theorem as put into general practice in the field of communications
engineering by Nyquist [31] and formalized by Shannon [32], has become commonplace in
the scientific and technical community. Simply stated the sampling theorem indicates that
a real lowpass signal having spectral content limited to the frequency range 0 to W Hz,
can be accurately represented by instantaneous samples of the amplitude of the signal
taken at time intervals of Ar= T, < 1/(2W) seconds. Entire texts (e.g., [12]) have been
devoted to the processing of the resulting discrete-time signal, and to the reconstruction
into continuous time of the extracted information or control bearing signals. (In fact,
generalized versions of the sampling theorem do not require uniformly time-spaced
samples, and also includes, for example, sampling the signal and its derivatives to form a
discrete-time representation [32][33].)

Shannon's presentation of the sampling theorem also allows for the conversion of a
real bandpass (i.e., bandlimited) signal, centered at f= £, , from continuous to discrete time
by employing the proper frequency downconversion techniques as stated in Section 2.3.
Reformulating this result, a real bandpass signal of approximate bandwidth B’ Hz, and
originally centered at some carrier frequency £, Hz, can be sampled by first
downconverting to a new center frequency of f, > B2 Hz, with W=f, + B'/2. An
idealized version of this process is depicted in Figure (3-4).

As Slepian appropriately points out [34], strictly speaking, truly bandlimited
lowpass/bandpass signals do not exist in reality, since this would imply that such a signal is

present for all time. In light of this, he established the concept of essentially or really
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bandlimited signals, to distinguish between exact mathematical models and models that are

less restrictive for practical implementation. Urkowitz applied this result and correctly

concludes that this approximate bandwidth of a real bandpass signal must be less than

200%, relative to its center frequency, £, . This center frequency is, as implied, the center

or midpoint of the signal frequency band.
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Figure (3-4). Bandpass signal pre-acquisition processing. a) A representative magnitude
spectrum of a bandpass signal of bandwidth B’ < B, centered at f, Hz. b) The magnitude
frequency response of the analog local oscillator used for frequency downconversion.

¢) The result of convolving the original spectrum with the local oscillator spectrum;
f.=B/2, W=f,+B'2. d) The representative spectrum of the desired signal, s(¢), prior to

conversion from analog to discrete time.
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Thus Shannon's previously presented method of preparing a bandpass signal for
conversion from analog to discrete time, and Urkowitz's requirement as stated above, are
consistent.

We now turn our attention to the representation of a bandpass signal, s(?), as the
product of the real lowpass signal, a(?), and the real bandlimited signal, cos[2nf, #+¢(#)-0].
As a consequence of Bedrosian's product theorem [35], in order for the signal, s(?),

modeled as

s(?) = a(f) - cos[2nf.t +¢(F) — O] (3-54)

to be bandpass, it is required that

4Ol =0, If1>11,

AN =0, Ifl<f1, (3-55)

~ and simultaneously that

{cos[2nf.t+4() ~61}| =0, If| <fa,
ZO’fZS Iflsf3 ’
= O’ lfl >f3 , (3_56)

with £, > f, . Here, |A(f)| = |7{a(?)}| is the magnitude spectrum of the real lowpass signal,

a(?). (Equality in Equations (3-55) and (3-56) can be interpreted as in the practical sense
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developed by Slepian.) Figure (3-5) is representative of this application of Bedrosian's
product theorem, for the case where f, approaches f; , and a(f) is real. Note that in view
of Slepian's results, this product theorem can be viewed both as a bandpass signal
construction technique and as justification of bandpass signal representation, as applied to

the signal s(¢) resulting from the pre-sampling process depicted in Figure (3-4).
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Figure (3-5). Representative spectra depicting a special case of Bedrosian's product
theorem. a) The magnitude spectrum of the real lowpass signal, a(¢). b) The magnitude
spectrum of the approximately bandlimited signal, cos[c(#)], where a(?) = 2nf1+¢(£)-6 .
¢) The magnitude spectrum of the product, a(f)cos[o(?)].
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We conclude that the pre-sampled signal, s(7), resulting from the proper
downconversion and anti-aliasing filtering of a bandpass signal centered at f, Hz, retains
the bandpass representation indicated in Equation (3-54). The resultant discrete-time

signal, s(n